01—03自编码器代码部分之一

阅读 291评论 0 8个月前

01—02自编码器(参考Antares老师)

就是这么一个过程。原始数据是没有折损的,然后我们人为的添加噪声,使得原始数据有折损。然后将折损的数据输入,得到隐藏层。然后从隐藏层到输出层(也叫构建层)。最后用构建层与原始数据对比,损失值越小,说明构建层的数据恢复的不错。

阅读 334评论 0 8个月前

02栈式自编码器

就是这样,深层网络的优势在于可以逐层的学习原始数据的多种表达。每一层都是以前一层的表达为基础的,往往比较抽象,适合复杂的分类等任务。堆叠自编码器就是在做这样的事情:单个自编码器通过虚构的三层网络,能够学习出一种特征变化的h=fθ(x)(这里的θ表示变换的参数,包括W,b和激活函数)。实际上,当训练结束后,输出层就没啥意义,没意义的东西要去掉。

阅读 280评论 0 8个月前

01—01自编码器

我们呢,先不考虑神经网络、机器学习等等的,就单单考虑自编码器,那么原来还是比较简单的。就是试图还原原始的输入信息。上图看一下吧。

阅读 336评论 0 8个月前

01自动编码器

第一:基础,怎么来理解这是基础呢?自动编码器就是一种尽可能复现输入信号的神经网络。为了实现这种复现,自动编码器就必须捕捉可以代表输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。

阅读 296评论 0 8个月前